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A new numerical algorithm, the diffusing-vortex method for time-dependent two-dimen- 
sional NavierrStokes equations, which was previously presented and applied to the incom- 
pressible viscous flow past a circular cylinder with high Reynolds number by Lu and Shen 
[ 11. is further developed for extension to general two-dimensional initial value problems and 
boundary value problems, The new algorithm consists of two time steps is a simulation cycle: 
a Lagrangian convection simulation for the first time step and a diffusion simulation through 
the use of new vortex points at dixed Eulerian mesh points for the second time step. The 
mathematical mechanisms of computation behind this algorithm, and its characteristics of 
convergence and accuracy, are analyzed in applications for the following problems: (1) an 
initial value problem involving the decay of a single vortex of finite size and the decay and 
interaction of a vortex-pair of two finite-core regions; (2) a boundary value problem: 
the unsteady flow field around a rotating cylinder with high Reynolds number up to 
Re,= (i. D/v <: 10,000. Numerical results are compared with either exact solutions or other 
numerical methods. The numerical advantages of the diffusing-vortex scheme over other con- 
ventional vortex methods, Cloud-in-Cell methods, particle methods, and some finite difference 
schemes are evaluated in terms of reducing total CPU time, avoiding cutoff procedures, and 
sidestepping various interpolations. I( 1991 Academic Press. Inc 

1. INTRODUCTION 

Two-dimensional and three-dimensional viscous flow problems of practical impor- 
tance remain today beyond the scope of prevailing methods for the solution of the 
governing full Navier-Stokes equations. Great strides have been made in recent years 
in the computational treatment of the Navier-Stokes equations as evidenced by 
many research papers on the subject, especially in the development of various finite 
difference and finite element methods. It is well recognized that the non-linear con- 
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vection terms are primarily responsible for many of the complex flow phenomena, 
and are the major cause of numerical difficulties. At high Reynolds numbers, strong 
non-linearity effects produce details characterized by scales which are widely apart, 
and the resolution of their interaction has been a major challenge. In other words, 
the length scale for the viscous region adjacent to the wall is inversely proportional 
to the square root of the Reynolds number, therefore much smaller than that for 
the inviscid region. In discretizing the entire domain, a very fine mesh is required 
to provide sufficient accuracy within the very thin boundary layer. To properly 
capture the complicated interaction behavior, very high mesh resolution is required. 
Without a very efficient and accurate numerical algorithm and an effective data 
structure, it is extremely difficult to obtain reliable numerical results. 

Much success in solving Navier-Stokes equations has been achieved by using 
the finite-difference technique, especially for application to internal flow at low 
Reynolds numbers. Extensive bibliographies are given by Harlow [a], Roache [3], 
and Wilkes et al. [4]. These references survey a great variety of schemes including 
the so-called methods: MAC, PIG, CEL, LINC, SIMPLE, SIMPLER, PISO, 
ICCG, QUICK, REMIXCS, and others. Only a few computational examples using 
the above algorithms have involved Reynolds number larger than 1000. Thoman 
and Szewczyk [S] use the finite difference scheme (originally suggested by Lelevier 
as reported by Richtmyer [6]) to calculate the flow past a circular cylinder. A 
method developed by Collins and Dennis [7] for solving high Reynolds number 
flow is based on expansions of the Fourier type and was successful under the 
assumption of the normalized time being less than one. Wei and Giiceri [S] present 
the results for two-dimensional separated flows past blunt bodies of arbitrary shape 
using the modified strongly implicit (MSI) method for Reynolds numbers less than 
100. Kwak and Chakravarthy [9] developed an implicit three-dimensional finite 
difference code, using primitive variables and pseudocompressibility approach. 
Mane and Ta Phuoc Lot [lo] solve the vorticity transport equation for unsteady 
flow past an airfoil with Reynolds numbers up to lo5 by using fourth-order 
accurate alternating directional implicit (ADI) schemes. Although some quan- 
titative results like the instantaneous vorticitiy distribution, the separation point, 
drag coefficient, lift coefficient, and wake length as a function of time were not 
presented in their paper, their final results are in very good agreement with a flow 
visualization of streamlines. 

Typically, the “vortex method” of simulating a real flow field is to discretize the 
regions of nonzero vorticity into point vortices and track their motion in a 
Lagrangian coordinate system. The local velocities can be computed by the Biot- 
Savart law, or from a Poisson equation according to classical hydrodynamics. 
Calculations using this method to study inviscid fluid motion involving point vor- 
tices have a long history-from Rosenhead’s hand calculation in 1931 [ 1 l] using 
a few vortices to recent computer calculations involving thousands of vortices. 
General reviews of vortex methods have been given, e.g., by Saffman and Baker 
[12], Leonard [13, 141, Aref [1.5], Anderson and Greengard [ 161. The details of 
the high order vortex method are described in Beale and Majda’s papers [17--l 91. 
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Perlman [20] and analyzed the effects of various parameters on the accuracy of 
vortex methods. Chorin in a number of papers [21-231 pioneered a random walk 
treatment of the two-dimensional vorticity equation. The main advanatage of such 
vortex methods is the elimination of the need of a fixed mesh grid. Another 
advanrage is that the computational domain excludes the irrotational region and 
becomes much smaller in many cases. However, the computational work is propor- 
tional to the square of the number of vortices, N*. 

To reduce the operation count of basic vortex interaction equations and the 
singular behavior of point vortices, the “vortex-in-cell” method was developed. As 
a special version of the “Cloud-in-Cell (CIC)” method that has arisen in several 
fields, the vortex-in-cell method was described for vortices by Christiansen [24]. In 
this method, the velocity field over a fixed grid was calculated from the stream func- 
tion, which is obtained from the vorticity by inversion of the Poisson equation. 
However, two additional steps are introduced: (1) the generation of mesh-point 
values for the vorticity field from the discrete vortices and (2) the interpolation of 
mesh point values of the velocity field back to the Lagrangian vortex points. Unfor- 
tunately, the uncertain numerical errors arising from the anisotropic interpolation 
of velocities in step (2) could often be significant. In numerical results presented by 
Baker [25], while the total circulation was conserved by the CIC method, the 
angular impulse was not conserved. 

Recently, Greengard and Rokhlin [26] proposed a multipole algorithm that 
would significantly reduce the velocity calculation in potential flow for initial value 
problems if the distribution of vorticity is reasonably uniform in a square-shaped 
region of interest. 

An elegant random vortex blob method for simulating high Reynolds number 
flow was proposed by Chorin [21-231 for application to two-dimensional cases. 
According to Chorin, the vorticity field is discretized with a vortex blob of small 
but finite support. The vorticity transport equation is solved by tracking a collec- 
tion of vortex blobs in the interior and by tracking vortex sheets near the solid 
boundary through the fluid with an random motion added to model the viscous 
diffusion. A carefully conducted application so far is due to Cheer [27, 281, who 
recently used Chorin’s algorithm and studied a chellenging subject-the unsteady 
separated wake development around an impulsively started circular cylinder. 
Cheer’s newest results [28] were in very good agreement with experimental data of 
Bouard and Coutanceau [29] and have evidently shown that the fractional time 
step associated with the random walk algorithm is a valid tool for problems 
involving a solid boundary in flow with high Reynolds numbers. However, 
experience has shown (Shestakov [30]; Lu [31]; Shen and Lu [32]) that 
convergence is often slow and computation is time-consuming since the total 
number of operations per time step for this algorithm is proportional to N*. 

With regard to the method by Raviart and his co-workers [33], as outlined and 
analyzed in Cottet and Gallic [34, 351, like Chorin they track the discretized 
vortices strictly in Lagrangian fashion without a fixed grid. Unlike Chorin they 
allow the strength (or “weight”) of each vortex to change after time step dt, by 
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evaluating the contributions from the Gaussian spreading of all the vortices. The 
random-walk displacements are eliminated, but other difficulties associated with 
the usual Lagrangian vortex methods remain-e.g., the dependence of CPU on N2 
for velocity and the cutoff effects. Later, Choquin and Lucquin [36] used a 
deterministic particle method to calculate the vorticity field induced by a single cir- 
cular vortex. They found that the choice of the cutoff parameter in the particle 
method does play a very important role in the accuracy of the method. No 
numerical examples calculated by this method are known to us where a solid 
boundary exists. 

A new numerical algorithm, the diffusing-vortex method as previously used by 
Lu and Shen [ 1 ] to study the two-dimensional incompressible flow past a cricular 
cylinder at Reynolds number 9500. The results showed excellent agreement with the 
experimental visualization obtained by Bouard and Coutanceay [29]. 

This paper describes the extension of the work by Lu [37] and Lu and Shen [ 1 ] 
to formulate a new numerical algorithm and device a numerical scheme for solving 
the general two-dimensional time-dependent incompressible Navier-Stokes equa- 
tions at high Reynolds number. The advantages of tis method in reducing CPU time, 
avoiding the difficulties in cutoff properties of the vortices, and circumventing 
various anisotropic interpolations will be shown through applications to general 
initial value problems and to boundary value problems. In Section 2, we present the 
basic approach which is based on operator-splitting and discuss the features that 
distinguish our method from other closely related ones. Section 2 also gives the 
details of our algorithm for initial value problems and boundary value problems 
and consideration of truncation error, mesh size, and time step. Section 3 deals with 
numerical examples and results. Section 4 summarizes our conclusions. 

2. THE NEW ALGORITHM 

Two-dimensional incompressible viscous flow described by the Navier-Stokes 
equations are considered. Let (x, y) be the Cartesian coordinates, (u, u) be the 
velocity components, t be the time and [ be the vorticity. Suppose now that L,. is 
the characteristic length and U is the characteristic velocity of the flow. Then the 
following nondimensional quantities, without the “bar,” can be defined: 

I.4 = tip, v = qu, x=2/L,., Y = .dL t = W/L,., [=[L,./U. (1) 

Consequently, the vorticity transport equation can be written as 

where Re = UL,/v is the Reynolds number. The flow is fully described, of course, 
when the vorticity [ is known at each instant. 
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Equation (2) is composed of the two mechanisms of vorticity diffusion and 
vorticity convection. Following Yanenko [38] and Chorin [21-231, the time 
integration may be broken into two fractional steps: pure diffusion and inviscid 
convection. Thus, we solve separately during time step d t, the pure diffusion 
equation 

ai 1 
z=&V’r (3) 

and the inviscid convection equation 

This technique was previously adopted by Chorin [21-231 in his random-walk 
vortex method. Because of Eq. (3), Chorin proposed a random-walk simulation 
of the diffusion process, based on its well-known mathematical analogy with 
Brownian motion. Equation (4) was handled by straightforward tracking. To 
validate his algorithm, the classical unsteady boundary layer over an impulsively 
started flat plate was solved as an example. With relatively few vortices and 
moderate time steps, the steady state Blasius solution was indeed reproduced by 
taking the average of a large number of profiles. However in this case, to obtain 
accurate instantaneous unsteady velocity profiles, Chorin’s computations need 
further processing (see Shen and Lu [32]). Lu [31] also showed that the statistical 
error could become serious if the total number of vortices was not large enough. 
Since the statistical error is inversely proportional to the square root of the total 
number of samples N, but the amount of computing time increases like N*, the 
improvement of accuracy would rapidly become prohibitively costly. 

A study was initiated to sidestep the random-walk aspects in Chorin’s algorithm. 
Actually, the task is only to be able to update the vorticity field, accurately, for 
small At in accordance with Eq. (3). Gaussian spreading of each vortex after At was 
used, before moving the vortices according to Eq. (4). For numerical implementa- 
tion, simpler programming and less CPU could be achieved by retaining a fixed 
grid for the vertical region. As a result, a scheme has been developed in which for 
each time step the discretized vortices always start from the mesh points of a fixed 
grid. To simulate diffusion, each vortex is first shattered during At to spread its 
vorticity, in a Gaussian distribution, among all mesh points. The total vorticity at 
each mesh point then defines the new vortices, as well as the local velocity to be 
used for the vortex displacement during At. In contrast with the usual Lagrangian 
vortex methods, the vortices move only one time step, then dissolve to create new 
vortices at fixed mesh points. The details of the algorithm are described below. 

2.1. Simulation of Diffusion for Initial Value Problems 

For the initial value problem in an unbounded domain without a solid boundary, 
if the vorticity distribution at moment t is known, the vorticity field after a lapse 
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of time At, i.e., the solution to Eq. (3), can be expressed in 
function 

terms of the Green’s 

i(x, Y, f + At) = jj,, l(x’, y’, t) G(x, y, x’, y’, At) dx’ dy’, (5) 

where G is the Green’s function for an initial value problem, which is the Gaussian 

r2 Re 
G(x, y,x’, y’,At)=&exp -- 

( > 4At ’ (6) 

where r’=[(x-~‘)~+(y-y’)~]“~ and all quantities are normalized. The dis- 
cretized form of Eq. (5) can be written as 

C(x, J’, f + At) = C C Yi,jG(x, Y, Xz,j> Yi,,> At), (7) 
i J 

where the subscripts i and j are integers referring to x and y at the mesh points, 
yi. i = [, jAx AJJ, and 

The diffusion process of a continuous vorticity field is thus approximated by the 
decay of many discretized vortices, located at the mesh points (x,,!, Y,,~) with 
strength yi,i, each of which spreads with a Gaussian distribution, with variance 
d2 = 2 At/Re, over the unbounded domain. From a statistical point of view, the 
probability that the vortex at (i, j) moves to a region of area dx dy centered at the 
point (x, y) would be G(x, y; xi, yj) dx .dy, and G is given by the Gaussian in 
Eq. (6). Recalling the mathematical relationship between Brownian motion and the 
diffusion process, this interpretation is also the cornerstone on which Chorin’s 
random-walk algorithm rests. 

Let the spatial ragion with vorticity be divided into uniform square mesh cells, 
of length Ax = dy = h, and each small area h2 is centered at (x,, j, yi, j) as shown by 
Fig. 1. The integer symbol (m, n) indicates the position of calculated point which is 
at x = m . h and y = n . h. They will be used frequetly as x, y indices at next time 
level A+l. 

The vorticity after At at each nodal point (m, n) is from Eq. (7) 

i(x,, Y,, t+Af)=-$sx i(xi,j, Y!,,, t)exP (- $). 
I I 

where 

1 = (4 At/Re)‘12, 

xi,, = xi = i h (i = 1, 2, . . . . i,,,) 

y,,, = yj = j. h (j= 1, 2, . . . . Al,,). 

(9) 

(10) 
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J=J max 

j=n+ I 
(f=l) 

j=n 
(f=O) 

j=n-1 
(f=l) 

j=l 

- 

i=l 2 3...m-1 m m+l ._.... Lx 

FIG. I. Mesh scheme for initial value problem 

Let a mesh length parameter c be introduced, 

c = h//i, (11) 

and also the time level index .4, which denotes the discretized time t after /i time 
steps At; i.e., t = A . At. Then Eq. (8) may be rewritten as 

Given a mesh point P(m, n), the nearest neighbors consist of eight mesh points 
on the solid line L = 1 (the first layer, see Fig. 1). Similarly, on the second line 
L = 2, there are 2 * 8 = 16 mesh points. By induction the terms in Eq. (12) may be 
regrouped to give 

i ,.I+1,=2 
m,n ?r i 

aTA+ z’: 01~:~kexp{-C12+(2-k)21} 
k=l 

+ . . . + F o(“) L,,L~k+,,exp{-CL2+(L-~+~)21~2}+ ... , (13) 
k=l 

where the symbol oi,f;. is defined by 

u’“) - (A) - V(C) 
e. f - co,0 - 4m.n for e=f=O (14a) 

u(“)=[(“) e,f m+‘>,,, +,+i~i.,,-,-ti~‘,,,+,t-in!,.,-, otherwise. (14b) 
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In Eqs. (14a) and (14b) the subscript e is an integer indicating the horizontal 
distance between the fixed reference point (m, n) and the calculated point in terms 
of the number of mesh cells and the subscript f is similarly the integer referring to 
the vertical distance (see Fig. 1) between the same points. 

It is well known that the maximum value of the solution of the transient diffusion 
equation in unbounded space can only decay with time. Supposing the maximum 
value is at the point (m, n), then 

i cn+1,< (A) m, ?1 --. iww, 

Because of Eq. (13), the above inequality becomes 

(15) 

’ 

+ F a~~,~,+,,exp{-[L2+(L-k+1)2]cZj+ ... (16) 
k=l 

In the limiting case where the vorticity is uniformly distributed over the whole 
domain, 

i (A + 1) = pJ, = . . = co. m, ?I (17) 

Equations (14a) and (14b) simply become one equation, 

and Eq. (16) is reduced to 

+ 4[exp( - 18~~) + 2 exp( - 13~‘) + 2 exp( - 10~~) + exp( -SC’)] + ...} = 1. 

(19) 

Increasing the total number of computing layers L to larger than 11 has little 
effect (an accuracy of lo-*) on the solution for c, since the extra terms on the left- 
hand side of Eq. (19) become negligibly small. From a computational point of view, 
however, the value of c controls the difference between the exact solution 
[(x,, y,, t + At) = &, and the discretized approximate solution iyg,: “. We consider 
it imperative that any algorithm reproduce correctly the equilibrium state C = lo. In 
this case, the relative discretization error for vorticity can be measured in the terms 
of the norm 

E=;~{c:;l-y (20) 

The effect of the mesh length parameter c on the discretized solution for this 
limiting case is shown by Fig. 2. For c z 1, the ratio of the calculated vorticity over 
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Mesh Length Parameter C 

FIG. 2. Effect of the mesh length parameter c on discretized solution. 

the exact value is equal to 1 approximately. When c > 1.3, error increases rapidly. 
For the given value of E z O( lo-‘), the value of c must satisfy 

c < 0.878. (21) 

The inequality (21) will be regarded as a necessary condition for the discretization of 
the diffusion equation. It relates the mesh length with the diffusion distance for a given 
time step and Reynolds number. 

For an arbitrary vorticity field at time t, the inequality (21) is till true at the point 
where the vorticity is a maximum c,,,,, = cl;;‘!. Since all other vortices are weaker, the 
upper bound of c,,,,, (‘+ r) is less than that for the uniform state < = co. Hence Eq. (21) 
must be equally valid, in fact somewhat conservative. At any rate, the correct 
representation of the uniform state and the decay of maximum vorticity are thus 
both ensured. 

Cottet and Gallic [34, 351 give a convergence proof for their particle method. 
This proof states that, in order for the method to converge to a solution of the 
Navier-Stokes equations, it is necessary to have 

h d C,.(At/Re)l/2 Mb) 

for some constant C,.. Using our notation with L (see Eq. (9)), the inequality (21b) 
can be rewritten as 

c<2c,.. (21c) 

Our inequality (21) has shown numerically that the unknown constant in Cottet 
and Gallic’s formula [35] is a function of the global relative error E, as shown in 
Fig. 2. For the special value of E z 0( 10e5), Cottet and Gallic’s constant C,. should 
be less than 0.439. 
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2.2. Simulation of Diffusion for Boundary Value Problems 

With a given value of the vorticity along the boundary, lb(t), and the initial 
distribution of the vorticity, cO(x, y, t), at time t, the solution of the diffusion 
equation Eq. (3) at t + At is (see Morse and Feshbach [39]) 

= irk Y, t + At) + in (x, Y, t + At), (22) 

where G is the appropriate Green function, defined by 

G[&=O for t>z 

and the term (aG/&), indicates the derivative in the direction normal to the surface 
6. The first term cr represents the diffusion contribution from the vortices inside 
domain D and [,, is the contribution from the vortices on the solid boundary. 

The solution of Eqs. (22) and (23) consists of answering three critically 
fundamental questions concerned with the validity of approximations to Green’s 
function. These questions are: 

l How can Green’s function be used to calculate the diffusion solution for an 
arbitrary boundary? 

. Is the total number of operations for the diffusion simulation still of the 
order of N*? 

l Does mesh distortion exist with the new scheme? 

Answers to these questions are provided in the subsequent sections of this paper. 

2.2.1. Construction of the Green’s Function for an Arbitrary Boundary 

It is difficult to solve the time-dependent Green’s function analytically for 
arbitrary 2D boundary conditions. Fortunately, for high Reynolds number cases 
Re p 1, we can use the solution of the flat plate as an approximation to the solution 
for an arbitrary boundary. Suppose the domain of interest is the half-space y > 0, 
bounded by the line y = 0 (see Fig. 3a). In this case the required Green’s function 
is obviously obtained by adding to the diffusing &function, i.e., the Gaussian, its 
image in the lower half-plane. In fact, it satisfies the no slip condition, including the 
zero normal velocity along y = 0, automatically. 

As shown in Fig. 3a, for a vortex near an infinite flat plate, the Green’s function 
can be written 

G(x,, y,,, xi, Yp 4 z) = 4nt:r){exp( -i(!“f))-exp( -(:(!)tr;e)}, (24) 

581/95/2-I 1 
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Y B(xiim, Yjim) 
a b 

FIG. 3. (a) Vortex point A(x,, y,) and its image B(x,,,, y,,,); (b) vortex A outside curve surface 
(simplified as Fig. 3a if 1 < 1 

where ri j is the distance between the vortex point at (xi, yi) and the calculated 
mesh pokt (x,, Y,~), 

r ,,I= C(xi-xwx)2 + (Yj- Yf1)~1”~ Pa) 

and (I,,~)~~ is the distance between the point (Xii,, y,,) inside the solid body (the 
image point of xi, yj) and the point (x,, y,), 

(Yz,.j)im = C(x~itw - xm)2 + (Yjim - Yti121 1’2. W) 

Using J. = (4 dt/Re)““, changing the form of Eq. (24) to fit equation (22), i.e., 

W,, y,,,xi,yi,l,,=-${exp(-$)-exp(-(ri~$”)} (26) 

and substituting Eq. (26) into the discretized form of the integral, the first term of 
Eq. (22) becomes 

or 

ir(x,, ~n,r+~r)=~~~i,j.G(x,,~n,xi,y~,dr). 
1 i 

A similar expression can be obtained for the second term of Eq. (22). 

Wa) 

Wb) 
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We have noticed that the form of Eq. (27b) is similar to that of Eq. (7). The 
Green’s function expressed in Eq. (26) however, is different from the Green’s 
function expressed in Eq. (6). 

2.2.2. Criteria for Simplification of the Green’s Function and Operation Count 

The operation count per time step to calculate Eq. (27a) or Eq. (27b), in prin- 
ciple, should be O(N*), where N is the number of mesh points. It looks as if the 
same troublesome problem arises here as in point vortex methods that employ the 
Biot-Savart law to determine the velocity from the vortices. Fortunately, there is an 
important and essential difference: namely, for Eq. (27a), the influence of the 
neighboring vortices falls away exponentially with distance-squared, instead of only 
algebraically in the case of the Biot-Savart law (more detail will be given in the 
next two subsections). The first term in Eq. (22) represents the diffusion contribu- 
tion from all the vortices yi,i, outside of the flat plate, and the second term is that 
from all the image points of Y,,~ inside the solid body (in the lower half-plane). 

Setting Ax% dy z A and then considering the only contribution to the points 
(x,, y,,) by the vortex point at (xi, y,) with the strength yi,,, where yi,,= 
[(xi, yj, t)l’ in the first term of Eq. (27), the fraction of Y,,~ reaching point (x,, y,) 
after At is 

E=i(~m> Y,,, t+At) 1 
QXi, yj, t) =; exp (28) 

The value of E decreases very rapidly as ri,j/l increases. For example, if the vor- 
ticity is truncated at 3.9 x 10-s~(x,, yj, t) the value of rz,j/;l is equal to 3, i.e., the 
diffusion from the vortex blob at (xi, y,) can only reach the points which are 
located inside the circle with radius 32 and centered at (xi, y,). In other words, if 
there are many vortex blobs coexisting on the (x, y) plane the vorticity at point 
(x,, y,) induced by diffusion is only related to those vortex blobs which are within 
the circle of radius 3;1 and centered at point (x,, y,). 

Therefore, for the general 2D case at high Reynolds numbers, the whole domain 
for diffusion simulation outside a solid body now can be divided into two regions: 
Region 1 is the “layer” with thickness of order O(1) (say, 311) surrounding the solid 
body (A must satisfy A 4 R, R being the radius of curvature of the solid surface) and 
Region 2 is the flow region outside the “layer,” extending to infinity, as shown by 
Figs. 3a and 4. 

Hence, the Green’s function in Region 1 can be approximated by the superposi- 
tion of the Green’s function for a single vortex point outside a flat plate and its 
image point as long as 1+ R, as shown by Figs. 3b and 4. The solid surface can be 
considered as a flat plate to those vortex points within the “layer” (e.g., typically, 
for At = 0.01 and Re = 10,000, /z = (4 At/Re) 1’2 = 2. 10e3 which is indeed much 
smaller than R - 1). Therefore, the expression Eq. (26) will be modified further and 
used as the basis for the approximation of the Green’s function in general 2D cases. 
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i l ; 

Region 1 I / . m Idn 

--‘--;rcr:; 
SolidBodySurface ---------- 

Region 1 
_-____---- 

_____--0-- 

Region 2 

FIG. 4. Vortex point (x,, y,) within Region 1 and its image B inside the boundary. (The vortex point 
P with a diffusion circle in Region 2 for error E < 3.9 * 10m5.) 

For the vortex points within Region 2, the Green’s function is simply 

G(x,, Y,, x,, Y,, t, 7.) = Re 
47c(t-T) 

exp (- i(!Rz)). (29) 

These points are far away (beyond -31) from the solid boundary like point “JJ” 
on Fig. 4 and, thus, would not interact with a solid boundary in diffusion simula- 
tion and would behave like inviscid vortices. However, they can still have their 
diffusion contribution to their neighboring points within a radius R 1~ 3& by 
behaving like a viscous core. 

For small At and large Reynolds number Re, the vortices within the thin 
boundary layer are well represented, while those farther away would behave like 
inviscid vortices, thus also well represented. To verify the validity of the Green’s 
function constructed above, the imulsively rotating cylinder problem has been 
chosen as a benchmark example for which an exact solution exists (results of this 
benchmark example are given below in Section 3.3). 

2.3. Simulation cf the Convection Process 

To discretize Eq. (4) for convection, the velocity field is needed. After the vor- 
ticity diffusion at each mesh point (x,, y,) at time t + At is calculated by Eq. (13), 
the velocity at each mesh point is determined via the stream function, by solving 
the discretized Poisson equation together with the proper boundary conditions. 
This choice over the Biot-Savart law is known to be computationally advantageous 
for large values of N. The usual three-point central difference approximation is 
written for time-level ,4, 
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and the velocity field is evaluated similarly by a centered difference for u and v, 

(31a) 

* 
(4 

v!A,’ = _ I+ 1,j- Ic/lyJ 
1. , 2Ax @lb) 

According to Eq. (4), the discretized vortex at (i,j) is to be displaced with the 
velocity, given by Eqs. (31a) and (31b), and by the time step At to reach time level 
/1+ 1. The new position of the vortex at (i, j) at new step ,4 + 1 after convection is 
simply 

x!” + I) = x!^’ + u!‘?) . At 1. I I., l,J Wa) 

yl,~.+‘)=yl,~+‘)+~l,~).At. 
Wb) 

The points (xj,; + ‘I, yj,;+ ‘I) are, of course, not at the mesh points of the fixed grid. 

2.4. Reinitiation of the Vorticity Field 

A common disadvantage of the pure Lagrangian tracking scheme is that the com- 
putational element would suffer from extreme distortion after a certain number of 
time steps, as pointed out by Van Dommenlem and Shen [40]. The distortion is 
even worse when the scheme is applied to the three-dimensional motion of the 
vortex filaments. To avoid this kind of distortion, a smoothing procedure after each 
Lagrangiun step is introduced as follows. 

The continuous vorticity at time level ,4 + 1 after convection is represented by 
point vortices, each of which possesses strength Y~,~= [(xi,,, Y,,~, t)h2 but is dis- 
placed from (xi,;.), yi,;)) to its new position (XI,;.’ I), yi,T+‘)) as shown by points A 
and A’, respectively, in Fig. 5. The points (xj,:’ I), y!,:+ ‘I) are, of course, not at the 
mesh points of the fixed grid. The distance AA’ is obviously 

AA'=[(*l:+"-xI,:')2+(yl,~.+"-yl:')2]. (33) 

FIG. 5. Change of position of vortex point A(xj,<‘, yf:‘,‘) after convection. 
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We now calculate the diffusion simulation at time step LI + 2. The new vorticity 
at each mesh point (x,, y,) is the summation of the diffusion contribution from all 
the vortices, effectively those in a certain neighborhood of the point (x,, vn); e.g., 
expression Eq. (8) now becomes 

(34) 

where ri,j is no longer the distance between the regular mesh points, but is now 
represented by the line A’M, as shown in Fig. 5, i.e., 

r~,=[(x~,~.+l’-X,)‘+(y~,~+l)-~n)’]. (35) 

In this way, the vorticity value at each fixed nodal point at time step n + 2 has been 
recovered. 

It should be noted that the above procedure for recovering all the nodal values 
of vorticity is completely different from the Vortex-In-Cell method. For a typical 
Vortex-In-Cell method (see [24, 25]), the pointwise vortex A’ in Fig. 6 is assumed 
to possess uniform vorticity within this cell. It contributes incremental vorticity 
ii, j to each to the four mesh points at (i, j), (i + 1, j), (i, j + l), and (i + 1, j + 1) 
according to a certain interpolation scheme, as shown for one cell in Fig. 6, 

t,,j=4 y$ (k = 1, 2, 3,419 (36) 

where h is the mesh spacing and A,% are the areas. The stength of point vortex A’ 
is to be credited to four mesh nodes according to Eq. (36). After all the vorticity has 
been distributed among all the mesh points a finite difference form of the Poisson 
equation is solved. After velocity components are obtained, the velocity of the point 
vortex A’ must be determined again by a bilinear interpolation in terms of an area- 
weighting technique in order to move point vortex A’ for next time step. These two 
bilinear interpolation procedures could often introduce significant accumulative 

(ij+l) (i+lj+l) 

vortex A 

FIG. 6. Area weighting scheme for the vortex-in-cell method. 
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error into numerical results. Baker [25] calculated the roll-up of the vortex sheet 
and concluded that the angular momentum was not conserved, while the total 
circulation and linear impulse are conserved by the Vortex-in-Cell method. A 
similar conclusion was also drawn by Leonard [13] in his review paper. In the 
new algorithm, however, the above two interpolation procedures are completely 
avoided. 

2.5. Accuracy, Stability, and Efficiency Considerations 

The error due to diffusion simulation, i.e., the truncation error of using Eq. (8) 
to approximate Eq. (5), is of order O(h3) at each step. The truncation error for the 
scheme of the first-order accuracy, Eqs. (32a) and (32b), is O(At2) for each step. 
The total error for the two fractional steps Eqs. (3) and (4), following Chorin 
[21-231 and Marchuck [40], can be estimated approximately as the summation of 
the two errors. Thus, for the present square mesh scheme the cumulative error is 

E tom, N W2) + @At). (37) 

The validity of Eq. (37) will be confirmed in the subsequent numerical examples of 
this paper. 

When the constraint Eq. (21) is followed, it requires h/(4 dt/Re)“’ < c,; cE being 
a constant of order 1, depending on the error E. For a chosen value of h, the 
following value for At is produced: 

At > (h/C,)‘. Re/4. (38) 

For example, if Re = 1000, h = 0.001, and C, = 0.878, we obtain At > 0.324 x 10 P3 
as the lower limit of At for proper diffusion simulation. There is no restriction on 
the maximum time step length At due to stability requirements. Thus, given the 
mesh length h, the value of At should be chosen relatively large and the estimated 
total truncation error of Eq. (37) becomes of the order O(At’). 

The operation count per time step to calculate using either Eq. (8) or Eq. (27a), 
in principle, should be of the order O(N2), where N is the number of mesh points. 
However, as was mentioned before, according to Eq. (28) r,,,/l is a function only 
Of E: 

1.00 2.00 3.00 4.00 

E 1.2 x 10-i 5.8 x 1o-3 3.9 x 1om5 3.6 x lo-’ 

This is simply the manifestation that the diffusion of each concentrated vortex is 
limited to within the diffusion distance O(n), as in Eq. (9). 

Consequently, for a grid point (m, n), it is only necessary to take contributions 
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from vortices whithin a circle of r,: if E is specified. For E = 3.9 x 10 -5, ri,,/A = 3 and 
the number of vortices contained in the circle may be estimated as 

n, - $ = 28.2 < 29 for E= 3.9 x lo- 5. (39) 

As an application for the square mesh scheme shown in Fig. 1, omitting all the 
mesh points beyond the layer L = 4 in the calculation of Eq. (12) would give a trun- 
cation error of the order of O(3.6 x lo-’ . [321:,]), where the factor 32 indicates 
that there are 32 mesh points along the layer L = 4 and [zi is the maximum vor- 
ticity at this time step. 

Therefore, the total number of operations for d@usion simulation of Eq. (8) or 
Eq. (27a) has nothing to do with the total number qf vortex points (or mesh points) 
N. Instead, it is a fixed value n, which is a function of accuracy E. 

Also note that Eq. (28) indicates that the total number of operations at each time 
step does not depend on the Reynolds number for a fixed value of the truncation 
error. On the other hand, the mesh length h should be kept within the order of the 
diffusion distance d = (4 d t/Re)‘;‘. 

3. COMPUTATIONAL EXAMPLES 

3.1. Decay of a Single Vortex with Finite Circular Core 

In order to test the performance of the present method, it has been applied to the 
problem of the decay of a single vortex with a finite circular cure. Milinazzo and 
Saffman [41] earlier used this problem in a critical examination of Chorin’s 
random-vortex method. Subsequently, the same problem was chosen by Roberts 
[42] to reexamine the effect of non-smooth initial conditions on the accuracy of the 
random-vortex method. An important task is to solve the vorticity transport 
equation, Eq. (2), with the initial condition in an unbounded domain, 

i(x, y, t)lt=“= 1 if x2+ y2< 1 

a.6 y, f)l,=,=O otherwise. 
(40) 

The convection terms actually disappear for this particular problem because of 
symmetry. To test the validity of the present algorithm, however, it is instructive to 
avoid taking advantage of the special radial symmetry of the vorticity distribution, 
but use the complete vorticity transport equation, Eq. (2) instead of the pure 
diffusion equation, Eq. (3). For this particular example, for convenience, the non- 
dimensional time expressed by Eq. (1) is redefined as 

t* = t/Re or t = t* . Re. (41) 



DIFFUSING-VORTEX NUMERICAL SCHEME 417 

Substituting Eq. (41) into Eqs. (2) and (3) and then dropping the asterisk, a new 
nondimensional vorticity diffusion is obtained which does not contain the Reynolds 
number explicitly. The circular domain R is then divided by n concentric circles as 
shown in Fig. 7. Each circular ring is of the same thickness 2 = (4/6t)“’ and the 
total number of circular rings is n = l/L. The area of the pth ring is S= (2~ - 1 )zi.’ 
(p = 1,2, 3, . . . . n). The coordinate of the center of the qth small area in the pth 
circular ring is obviously 

X p,y = rp cos(2W~p); Y~.~ = rp W%/~,) (p = 1, 2, . ..) n; q = 1) 2, . ..) M/J, 

where M, indicates the integer part of (2~ - 1 )rc. 
It must he stressed that the foregoing circular mesh structure is only used for the 

first step because the initial domain happens to be a circle. The actual mesh structure 
permanently usedfor subsequent computation is the simple square grid centered at the 
origin with spacing h in each coordinate direction, as in Fig. 1. Therefore there are 
two mesh systems overlapping each other in the first step. After the first step the 
ring mesh system is discarded. 

The computational domain is defined by two finite constants X, and y,. The 
total number of mesh units is N, x NY, N, = 2x,/h and N,. = 2y,/h. The coor- 
dinates of mesh point (i, j) are xi = -x, + i . h and yj = -y=- + j h, where i, j are 
integers (1 < i,< N,Y and 1 ,<j,< NY). The initial stength of the vortex at (x,, y,) is 
Y (O) = (2. A,)) lp y (‘I = 1 .A 
!i% time step A’= 1 is 

p. The vorticity at mesh point (xi, y,) after diffusion at the 

;r,l~=~p~,,,~~,exp(-~), (42) 

where r,, y = [I (xp - xJ2 + ( yy - yJ2] 1/2. As shown by Eq. (39) most of the opera- 
tions in hq. (42) are not needed. Thus Eq. (42) is rewritten as 

(43) 

a b 
FIG. 7. Initial vorticity field for a circular vortex R = 1: (a) Domain divided by n concentric circles: 

(b) Enlarged mesh element. 
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where n, is defined by Eq. (39). The Poisson equation (30) can now be solved to 
obtain the velocity field for the updated vorticity distribution Eq. (43). The values 
of x, and y,, however, have to be specified prior to solving the Poisson equation. 

3.1.1. Initial and Boundary Condition for the Stream Function 

The initial conditions consist of the solutions of the Poisson and the Laplace 
equation, inside and outside the circle, respectively, and both are equal to zero at 
R= 1, 

1j(~‘=(1/4)(1--r~)forr<l; $‘01=(-1/2)logrforr~l. (444 

The fluid velocity is everywhere azimuthal, 

u(O)= -y/2; ~‘~‘=x/2for r< 1; u(‘)= -y/(2?); ~‘~‘=x/(2r~)for r> 1 (44b) 

To solve the velocity field at step A = 1, the infinite domain need to be truncated 
at a certain large distance r, . The computation is to be carried our within the 
domain x 6 r 3c and y f r,. The boundary value of the stream function is then 
determined as 

$(“)=I(/(“)= -jlogr,. (45) 

The Poisson equation with the initial vorticity field Eqs. (44a), (44b) and boundary 
condition Eq. (45) is solved to obtain velocity components u$‘, us:). Substituting 
u!,‘), and uf,‘i into Eqs. (32a) and (32b), the new position (xl,‘), yi*j) is obtained, of 
the point vortex which was situated at nodal point (xi,‘), yj,‘;) originally. 

The next step is to solve for the vorticity field at step /1+ 1 = 3 according to the 
diffusion method expressed by the following expression, 

where c is given by Eq. (11). 
The foregoing steps are repeated until the desired time step is reached. 

3.1.2. Computational Results and Conservativity 

The well-known integral invariants and a decay law for an arbitrary two-dimen- 
sional vorticity distribution are 

ss 5 dx dy = To (47a) 
D 

d 
z /yJ jj ir2 dx dy = $ \jD i dx dy, 

where r. is the initial total circulation and D designates the entire flow field. To 
check the conservativity of the present method, we calculated the total circulation 
r at each time step for a single vortex with a circular core. A typical result for 
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Re = 5000 plotted in Fig. Sa has shown that the present method does satisfy the 
vorticity specified by Eq. (47a). Furthermore, using conservation relations (47a) 
and (47b), we can obtain the following angular-momentum relation, 

(48) 

3.8 ’ 
0 Present Method (Re=5000) 

3.6 - - Exact Solution (Re=5000) 

3.4 - 
L 
c 3.2- 

2 
-Ej 3.0 - 

0 2 4 6 8 10 12 14 

Time t 

b 
1.2 

g 1.0 
Random Walk Method 

.~ 

3 0.8 
E 
2 
5 
g 
E 

0.6 

‘a 
z 
p 0.4 

0.2 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

Time t 

FIG. 8. (a) Evolution of total circulation r of single vortex with finite core (R = 1); (b) evolution 
of angular momentum of single vortex with finite core (R = 1). 
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0.8 

0.2 

0.0 

FIG. 9 ‘. (a) Vorticity field for single vortex of finite core R = 1 (non-dimensional time is scaled as 
I = tu/(r 1 Re) = I v/L*); (b) azimuthal velocity field for single vortex of kite core R = 1. 
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where A,(O) is the initial value of A,(t), in this case equal to f, and R2 denotes the 
non-zero vorticity region. The conseruativity relations (47a), (47b), and (48) are used 
to check the accuracy of the diffusing-vortex mthod. 

Figures 8b, 9a, and 9b display the computed value of the angular-momentum 
integral A(t) (as was defined by [42]), the vorticity field, and the velocity field, 
respectively. The computation is carried out at At = 0.05, h = 0.1, for f < 1.5, h = 0.2 
for t>lSandx,=y,= 10 for Reynolds number Re = 1, and At = 0.05, h = 0.006, 
X, = y, = 3, for Re = 5000. For the discretized version, the angular-momentum 
integral is 

The relative error is defined as 

e(T)= IA(T)-.%(T)1 
A,(T) . 

(49) 

(50) 

Figure 8 compares the angular momentum calculated by different methods and the 
exact solution. The calculation was carried until T = 47~, which is the initial rotation 
time of the vortex. 

In the random-vortex method Roberts [43] obtained his solution with 
e(T) = 0,453 % for Reynolds number Re, = 10,000 (Re = Re, = 5000). The value of 
e(T) obtained by the present method in 0.22 % for Re = 5000. The random vortex 
calculation was also performed. The advantage of the new algorithm over the 
random vortex method is very obvious as shown by Fig. 8 and Table I. The CPU 
time is for the same computer (IBM3090-600E), so the comparison is valid. For the 
random vortex method, the nonzero vorticity core was discretized into 10,000 
vortex points to maintain the comparable relative error e(T) with the diffusing- 
vortex method. 

However, comparison in integral quantities such as the angular momentum is not 
conclusive in assessing accuracy. It is more convincing when the instantaneous 
vorticity and velocity computed by the new dlj’fusing-votex method are found to match 
very accurately with the exact solution, as shown in Figs. 9a and 9b, even for low 

TABLE I 

Comparison of Angular Momentum for a Circular Vortex 

Method e(T) (“/I CPU (min) 

Random vortex 0.52 47 
New diffusing-vortex 0.22 21 

Note. 10,201 mesh points for the diffusing-vortex method; 
10.000 vortices for the random vortex method. 
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Reynolds number Re = 1. There were neither instantaneous velocity distributions 
nor vorticity distributions published by both Roberts [43] and Milinazzo and 
Saffman [42]. 

3.2. Decay of Vortex Pairs of Two Finite-Core Regions in Proximity 

The decay of the vortex pair of two finite cirular cores with both positive and 
negative sign have been calculated to further confirm the validity of our algorithm. 
This calculation is based on the initial conditions and boundary conditions for the 
stream function. Results of these calculations are described here. 

3.2.1. Initial and Boundary Conditions ,for the Stream Function 

In order to examine further the new method with non-trivial convective terms, we 
next solve the evolution of an initial vortex pair, each of them having a finite core. 

The nondimensional initial condition is 

i(x, Y, t)l,=,= 1 for (x-xx,.)*+ y*<Rior (xi-x,)*+ y*<Ri (5la) 

it.? Y? t)l,=o = 0 otherwise. (5lb) 

There is no analytic solution for the instantaneous velocity and vorticity for this 
problem; The square mesh structure used in example A is again used here. 
Following example A, the initial two circular domains are divided into n 
concentric circular rings, each of which possesses the same thickness il = (4 d t/Re)“‘. 
The procedures here are similar to that for example A. The schematic is shown by 
Fig. 10. To solve the Poisson equation, the boundary condition for the stream 
function at the fax-field, which can be described approximately as 

$(xX, y,)= +~~,,log[(x,-x’)*+(yX- y’)2]“2dx’dy’. (52) 

3.2.2. Computational Results and Conservativity 

The calculation is carried out for Eqs. (2) and (3) without using the transforma- 
tion of Eq. (41). The angular momentum for each time step is calculated using 
Eq. (49). In Table II, the relative error defined by Eq. (50) and the computing time 
for each case are listed as a function of the mesh length h for Re = 5000, At = 0.08, 
R, = 4h, x,. = 8h, and fixed farlield boundaries x, = y, = 0.4. 

FIG. 10. Initial vortex pair at r=O. 



DIFFUSING-VORTEX NUMERJCAL SCHEME 423 

TABLE II 

Effect of Mesh Length on Relative Error of Angular Momentum 
for the Vortex Pair Problem at a Fixed Value of At 

h 0.889 x 10-l 0.800 x IO-* 0.635 x lo-’ 0.494 x 1o-2 0.400x IO-~’ 

c = h/l, 1.111 1.000 0.794 0.618 0.500 
N,xN, 91 x 91 101x101 126x 126 162= x 162 201 x 201 

e(T) 2.88 % 0.41 % 0.26 % 0.18 % 0.15% 
CPU 17.1 min 23.1 min 60.5 min 138.6 min 238.5 min 

Note. Re = 5000, At = 0.08, d = 0.00775, x, = yu = 0.4000. 

We notice that the conservativity relation (48) for a single vortex is also valid for 
the present example. The evolution of A(t) - A, with time t for Re = 1000, 3000, 
5000, and 7000 is also shown in Fig. 11. The results were obtained with h = 0.00635, 
dt=0.08, NXxN,=lO1xlO1, x,=yoo = 0.4000 and each calculation required 
about 24 min of CPU time. The computation was done with an IBM3090-600E (a 
64-bit supercomputer at Cornell University). 

The results in Table II show that the mesh length parameter c plays an important 
role for both the computing time and, especially, the relative error. The value of the 
relative error e(T) for c > 1.1 is much higher than that for c < 1 as shown in 
Fig. 12a. However, it is interesting to note that the value of e(T) does not decrease 
very much while c decreases further from c = 0.7940 to 0.5000 (correspondingly, h 

0 

Re = 1000 ,,” 
,’ 

,’ 
,’ 

: I’ 
,’ 

Points --- Present Method 
Lines ---- Exact Solution 

0 1 2 3 4 5 6 7 6 9 10 11 12 

Time 

FIG. 11. Angular momentum vs time for different Reynolds numbers (a vortex pair with same 
positive sign). 
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decreases from 0.00635 to 0.004 in this interval). The reason is that the truncation 
error of the convection simulation is of the order O(dt’) = O(0.0g2) = 0(6 x 10e3) 
and dominates over the error of the diffusion simulation, which is of the order 
O(h3) = O(0.0053)= O(10P7). In order to chack the estimate of Eq. (37), e(T) 
is computed for different values of h under the condition Re = 5000 and c = 1, 
i.e., h = 1, = (4 dr/Re)“‘. According to Eq. (37), the error estimate is O(dt). The 
behavior in Fig. 12b shows that the calculated results do follow the trend. 

Figures 13a-d show the evolution of the vorticity field using three-dimensional 
graphics at Re = 5000. The instantaneous stream line patterns are plotted in 
Figs. 14a-d. Inirially the vortex pair was situated on the x-axis with a separation 
distance x, = 8h. As time increases two cores with both positive vorticity gradually 
approach each other and finally merge into one core and the long axis of the core 
is no longer coincident with the x-axis after a few time steps. Lo and Ting [43] 
published their research results for low Reynolds number (less than 100) for this 
problem, using asymptotic expansion methods, but they did not give the instan- 
taneous flow field. 

3.3. Unsteady Flow Field outside a Rotating Cylinder 

The flow field induced by an impulsively rotating cylinder with radius R = 1 and 
constant angular velocity o is now studied. The definition of the nondimensional 
quantity in Eq. (1) is still used, setting characteristic length L, = R and charac- 
teristic velocity U= oR, then 

u = wRii, v = oR6, x=Rx 
; 

y= RJ, r= RF, 

Oi..‘..,.....,.....,...,., 
0.4 0.6 0.8 1.0 1.2 

c=hfh 

(53) 

. 0.1 Re2h4 
0 mw 

0.5 0.6 0.7 0.8 0.9 
Mesh length h 

F1c.12. (a) Effect of mesh length on relative error of angular momentum and CPU for a vortex pair 
with both positive sign; (b) Comparison between e(T) and a curve y =O.l Re’h“. 
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FIG. 13. Vorticity field of a vortex pair with same sign (Re = 5000): (a) time = 0.04; (b) time = 0.40; 
(c) time = 1.40; (d) time = 2.40. 
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FIG. I3-Continued 
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b 

FIG. 14. Instantaneous stream function for a vortex pair with both positive sign: (a) time = 0.04; 
(b) time = 0.40; (c) time = 1.40; (d) time = 2.40. 
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A solution is needed for the vorticitiy transport equation, Eq. (2), under the 
boundary condition, dropping the bar, and using the polar coordinate system (r, 0), 

ug = 1 for r = 1; v,=Oforr=co. (54) 

3.3.1. Initial Condition 

One of the difticulties in this problem is the specification of the initial conditions. 
For small time, the vorticity is initially infinite and confined to an infinitesimally 
thin region surrounding the cylindrical surface. Thus the direct application of a 
finite difference approximation to the equation cannot give the initial flow field 
correctly. But the Rayleigh solution is a good approximation. The velocity and 
vorticity at each mesh point (r,, 0,) are 

2 
s 

Am 
h(r,, o,,, to) = 1 -- 

(ns’2 0 
exp( -x2) dx 

112 
exp( -A2 

where A, = (Re/4to)“2(r, - 1). 

3.3.2. Diffusion Simulation 

The counterpart of Eq. (27) under the polar coordinate system is 

i~(r,,,s.,t+At)=~~~~(r;.~~,t)[exp(-~~-exp(-(~’~!bp)]Au 
” i i 

(57a) 

or 

[l(rm,8,, t+At)=xxy.. L p -& -L i j ‘.‘[ni2ex ( j2) nl~exp(-iri’$mg)]~ WW 

where Y,,~ is the strength or small circulation of the vortex at (r,, O,), 

yi,, = i(r,, d,, t) Au; do = ri,i(Ar)j(Ad),, (58) 

where ri,i is the distance between the vortex point at (ri, Q,) and the calculated mesh 
point (rm, o,,), 

ri,, = [(vi cos Bi- r, cos O,,)’ + (ri sin Bi - rm sin 0,,)2]“2 (59) 

and (rj,i)img is the distance between the point (r,, 13,) and the point (l/y,, 0,) inside 
the circular cylinder which is the image point of (ri, 13,), 

(ri,j)img= {[y,:’ cos Oj-r, cos O,]‘+ [yr’sin %j-r, sin 13,]~}“*. (60) 
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For those vortices far away from a solid surface (for instance, beyond Y N 3L), the 
vortex Y;,~ would only carry a finite core of the Gaussian distribution, i.e., Eq. (57b) 
would degenerate to 

The second term of Eq. (22) represents the diffusion contribution from the 
vorticity on the cylindrical surface and can be integrated. For a solid boundary of 
arbitrary shape, the factor in the second term of Eq. (22) can be approximated as 

(61b) 

where A = r - R is the normal distance of the calculated point to the solid 
boundary. If the surface of the solid boundary is divided into m equal pieces 
and the length of each of the pieces is As, the second term of Eq. (22) can be 
written as 

iII(r,,,, Q,, t+ At)= -Al h (“;;‘-@‘) As. 

The Green’s function in Eq. (61b) is determined by Eq. (26) and the value of GimL: 
is taken from point Aimg which is the image point of point A. As analyzed before, 
the number of operations surrounding point A is very small since the value of G 
decreases exponentially with the distance squared. Substituting Eqs. (61a) and (61~) 
into Eq. (22), the vorticity field at t + At is then 

where Green’s function in the cylindrical coordinate system is 

and Y,,~, r,,,, and (ri,i)lmg are given by Eqs. (58), (59), and (60). 

3.3.3. Boundary Condition-Vorticity Value on Cylinder Surface 
for the Next Time Step 

It has been well recognized that the most challenging task for directly solv- 
ing the vorticity transport equation lies in how to determine the vorticity 
value on solid boundary surfaces. In practice the boundary condition is 
usually given in terms of the velocity (no slip condition) and not vorticity. 
This is because the vorticity value on the solid surfaces is often very difficult 
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to calculate. With our diffusing-votex algorithm, fortunately, this difficulty 
can be overcome. In our rotating cylinder problem, we do not need to use the 
known solution on the cylinder surface as the boundary valued of the vor- 
ticity at each time step. Instead, the vorticity value on the cylinder surface is 
obtained by directly substituting r, = 1 into Eq. (62) for the next time step. 
We should note that our method does not easily deal with velocity boundary 
conditions, since our Navier-Stokes equations are written in vorticity form 
and not velocity form. 

3.3.4. Conoection Simulation 

The new position of the vortex (i, j) after the convection step under the 
polar coordinate system is then defined by 

rj::+l’=rf,:‘+ (u~)~~~.‘. At 

8cir.+“=Hj:‘+(o,)i:‘.dl, 
1.J 

ri. i 

where the superscript A indicates the time step, i.e., t = A . At. While the calcula- 
tions with Eqs. (64a) and (64b) are performed, the continuous vorticity field is 
simply replaced by many point vortices, each of which possesses circulation 
[(ri, O,, t) Aa, and then each point vortex at [ri,$‘, Oar)] is allowed to move to its 
new position [ri,“,’ ‘, O$+ ‘) ] which is not at nodal points, in general. Note that the 
single subscript, as in rir O,, designates the mesh point, and the coordinates with 
double subscripts and single superscript A, as in r I,:‘, O(.;.‘, represent the position of 
each discretized vortex point under the pollar system. 

Following the whole procedure for reinitiation of the vorticity field, the diffusion 
contribution to mesh point M(r,, 0,) from the vortex A’[rj,;+“, 0~,~“‘] is only 
related to the distance between them, i.e., A’M as plotted on Fig. 15: 

FIG. 15. Point vortex A at time t moves to its new position A’ at time I + AI. 
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Dashed Line---Exact Solution 

Solid Line----F’resent Method 

0.00 0.05 0.10 0.15 0.20 

Distance irom Cylinder Surface: r-R 

FIG. 16. Unsteady vorticy field induced by a rotating cylinder at Re = 5000. 

Dashed Line-m--Exact Solution 
Solid Line-Present Method 

0.00 0.05 0.10 0.15 0.20 

Distance from Cylinder Surface: r-R 

FIG. 17. Unsteady velocity field induced by a rotating cylinder at Re = 5000. 
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The new vorticity at each mesh point (Y,, (3,) is the summation of the diffusion 
contribution from all the vortices, effectively those in a certain neighborhood of the 
point (Y,, 0,). The procedure for recovering the vorticity value at each fixed nodal 
point at time step /i + 2 is the same as that described before. 

The calculation for this problem started at t, = 0.01, using the Rayleigh solution. 
The Reynolds numbers chosen were Re, = UD/v = 10,000 (i.e., Re = Re, = 5000). 
The computational parameters were At = 0.04 and % = 0.00566, and A8 = A5 = 0.005 
for the transformed polar system t = log r. The unsteady vorticity field and velocity 
field are shown in Figs. 16 and 17. The difference between the new method and the 
exact solution increases with time. These results have demonstrated that the new 
diffusing-vortex algorithm procedures solutions in excellent agreement with the 
exact solutions. 

4. CONCLUSIONS AND DISCUSSION 

A new numerical solution algorithm, the diffusing-votex method, has been 
developed to study two-dimensional incompressible flow at high Reynolds number. 
The algorithm discretizes the vorticity field and splits the transport equation into 
two fractional steps: diffusion and convection. It may be natural to compare this 
method with Chorin’s random-vortex method. The essential differences are: (1) the 
diffusion process for each time step is simulated by the exact solution of the diffu- 
sion equation in an unbounded domain, instead of by a random walk approxima- 
tion. The new algorithm uses the local value of the vorticity field at fixed mesh 
points for the discretized vortex strength. The discretized vortices do not maintain 
the same vortex stength as required by a random walk algorithm. The number of 
operations for the diffusion calculation for our diffusing-vortex method is no more 
than ~1, (although the total number of operations for the random vortex method 
is N2, it is considered one of the most efficient methods for diffusion simulation 
among the conventional vortex methods); (2) the velocity field is determined for the 
same fixed mesh points so that it is possible to use a high-order convection scheme 
without interpolation. The convection term, which is troublesome for typical finite 
difference schemes at high Reynolds number, is simulated by tracking the motion 
of each discretized vortex point. But the new scheme is Lagrangian,for only one time 
step, through the use of new particles at fixed mesh points for the next time step. 

The new diffusing-vortex method has demonstrated great potential for extension 
to three-dimensional (3D) calculations, based on the following two issues. First, the 
computational examples have shown that the CPU time is of the order of N(log N) 
instead of N2 for typical vortex methods (N is the total number of vortices). 
Second, there is no restriction on the maximum value of the time step length 
imposed by stability. Instead, there is a lower liimit of At for a proper diffusion 
simulation, i.e., At > (h/C,)‘. Re/4. In terms of efficiency, our method may be 
limited in 3D when compared to grid-free methods for some problems. This issue 
is currently under investigation. 



434 LU AND ROSS 

ACKNOWLEDGMENTS 

This work was fully supported under National Science Foundation Award ISI- and is grate- 
fully acknowledged. The authors are also grateful to the Cornell University Theory Center for providing 
computational resources and advice during the research period. Finally, the authors would like to 
express their gratitude to Professor S. F. Shen for his advice and his earlier contributions in this field. 

REFERENCES 

1. 2. Y. LU AND S. F. SHEN, Numerical Methods in Luminar and Turbulent Flow, Vol. 5, edited by 
C. Taylor, et al. (Pineridge Press, Swansea, UK, 1987), Part 1, p, 619. 

2. F. H. HARLOW, Los Alamos Scientific Laboratory Report No. La-4281, 1969 (unpublished). 
3. P. J. ROACHE, Computational Fluid Dynamics (Hermosa, Albuquerque, NM 1972) p. 351. 
4. N. S. WILKES, C. P. THOMPSON, J. R. KIGHTLEY, 1. P. JONES, AND A. D. BURNS, Numerical Methods 

in Laminur and Turbulent Flow, 1984, Vol. 4. 
5. D. C. THOMAN AND A. A. SZEWCZYK, Phys. Fluids Suppl. 12(H), 76 (1969). 
6. R. D. REHTMVER AND K. W. MORTON, D@rence Methods ,for Initial Vulue Problems, 2nd ed. 

(Wiley, New York, 1967). 
7. W. M. COLLINS AND S. C. R. DENNIS, J. Fluid Mech. 60, Part 1, 105 (1973b). 
8. S. S. WEI AND S. 1. GIICERI, Numerical Methods in Laminar and Turbulent Flow, Vol. 5, edited by 

C. Taylor, et al. (Pineridge Press, Swansea, UK, 1987) Part 1, p. 693. 
9. D. KWAK AND S. R. CHAKRAVARTHY, AIAA J. 24, No. 3, 390 (1986). 

10. L. MANE AND TA PHUOC Lot, in Numerical Methods in Laminur and Turbulent Flow, Vol. 5, edited 
by C. Taylore et al. (Pineridge Press, Swansea, UK, 1987), Part 1, p. 867. 

11. L. ROSENHEAD, Laminar Boundary Layers (Oxford Univ. Press, Oxford, 1963). 
12. P. G. SAFFMAN AND G. R. BAKER, Ann. Rec. Fluid Mech. 111, 95 (1979). 
13. A. LEONARD, J. Comput. Phys. 37, 289 (1980). 
14. A. LEONARD, Ann. Ret;. Fluid Mech. 17, 523 (1985). 
15. H. AKEF, Ann. Rec. Fluid Mech. 15, 345 (1983). 
16. A. ANDERSON AND C. GREENGARD, SIAM J. Numer. Anal. 22, No. 3, 413 (1985). 
17. J. T. BEALE AND A. MAIDA, J. Comput. Phys. 58, 188 (1985). 
18. J. T. BEALE ANV A. MAJDA, Math. C&npuf. 39, 1 (1982). 
19. J. T. BEALE ANU A. MAJDA, Math. Comput. 39, 28 (1982). 
20. M. PERLMAN, J. Compur. Phys. 59, 200 (1985). 
21. A. J. CHORIN, J. Fluid Mech. 57 No. 4, 785 (1973). 
22. A. J. CHORIN, J. Comput. Phys. 27, 428 (1978). 
23. A. J. CHORIN, SIAM J. Sci. Statist. Comput. 1, 1 (1980). 
24. J. P. CHRISTIANSEN. J. Compur. Phys. 13, 363 (1973). 
25. G. R. BAKER, J. Comput. Phys. 31, 76 (1979). 
26. L. GREENGARD AND V. A. ROKHLIN, Yale University Research Report No. YALEU/DCS/RR-459, 

1986 (unpublished). 
27. A. Y. CHEER, SIAM J. Sci. Statisf. Comput. 4, 685 (1983). 
28. A. Y. CHEER, J. Fluid Mech. 201, 485 (1989). 
29. R. BOUARD AND M. COUTANCEAU, J. Fluid Mech. 101, No. 3, 583 (1980). 
30. A. I. SHESTAKOV, J. Comput. Phys. 31, 313 (1979). 
31. Z. Y. Lu, M. S. thesis, Cornell University, 1983 (unpublished). 
32. S. F. SHEN ANV Z. Y. Lv, Numerical Methods in Heat Transfer, III, edited by R. W. Lewis (Wiley, 

New York, 1985), p. 79. 
33. P. A. RAVIART, An analysis of perticle methods, Numerical Method.7 in Fluid Dynamics, CIME 

course, Como, 1983 (unpublished). 



DIFFUSING-VORTEX NUMERICAL SCHEME 435 

34. G. H. COTTET AND S. GALLIC, Centre de Mathtmatiques Appliqukes, Ecole Poly-technique Rapport 
Interne No. 115, 1985 (unpublished). 

35. G. H. COT~ET AND S. GALLIC, Centre de Mathkmatiques Appliqukes, Ecole Poly-technique Rapport 
Interne No. 158, 1987 (unpublished). 

36. J. P. CHOQUIN AND B. LUCQUIN, Int. .I. Numer. Methods Fluids 8, 1439 (1988). 
37. Z. Y. Lu, Ph. D. thesis (Aerospace Engineering), Cornell University, 1987 (unpublished). 
38. N. N. YANENKO, The Method qf Fractional Steps, English transl., edited by M. Holt (Springer- 

Verlag, Berlin, 1971). 
39. P. M. MORSE AND H. FESHBACH, A4efhod.y qf Theoretical Physics (McGraw-Hill, New York, 1953), 

p. 857. 
40. L. L. VAN DOMMENLEM AND S. F. SHEP;, in Proceedings, Thirteenlh Biennial Fluid Mechanics 

Symposium (Olsztyn-Kortowo, Poland, 1977). 
41. G. I. MARCHUK, Dokl. Acad. Sci. USSR 155, Nos. 1-6, 10 (1965). 
42. F. MILINAZZO AND P. G. SAFFMAN, J. Comput. Phys. 23, 380 (1977). 
43. S. ROBERTS, J. Comput. Phys. 58, 29 (1985). 
44. R. K. C. Lo AND L. TING, Phys. Fluids 19, No. 6, 912 (1976). 


